TYPICAL DURA-HOLD SINGLE CRIB WALL SAMPLE CALCULATIONS

Note: Calculations shown below are short form preliminary design analysis for the typical DURA-HOLD single crib wall section shown on Plate No. DH-6. Calculations are performed using the Coulomb Analysis Method for retaining wall design.

```
Given:
                          15'-0"
      Η
                          18.43° (Backfill at 1:3 slope)
      i
                          15'-0" + 1'-8" = 16'-8"
      H.
                          1'-0"
      h
                          6'-0"
      b
      γwall
                          145 pcf
                          No surcharge
      q
      f
                          0.6
                          30°
      φ
                          7.13° (Wall at natural 8:1 batter)
      α
```

 β = 82.87° δ = 2/3 ϕ = 20°

γsoil = 130 pcf (saturated) γstone = 135 pcf (compacted)

1. Determine forces acting on wall:

a. Find K_a and K_p:

$$\mathbf{K_a} = \begin{bmatrix} \frac{\cos c \beta \sin (\beta - \phi)}{\sqrt{\sin (\beta + \delta)} + \sqrt{\frac{\sin (\delta + \phi) \sin (\phi - i)}{\sin (\beta - i)}}} \end{bmatrix}^2$$

$$= \begin{bmatrix} \frac{\sin (82.87 - 30)}{\sin 82.87} \\ \frac{\sin (82.87 + 20)}{\sqrt{\sin (82.87 + 20)} + \sqrt{\frac{\sin (20 + 30) \sin (30 - 18.43)}{\sin (82.87 - 18.43)}} \end{bmatrix}^2$$

$$K_a = .33$$

$$\mathbf{K_{p}} = \begin{bmatrix} \frac{\operatorname{cosec} \ \beta \sin (\beta + \phi)}{\sqrt{\sin (\beta - \delta)}} & -\sqrt{\frac{\sin (\delta + \phi) \sin (\phi + i)}{\sin \beta - i}} \end{bmatrix}^{2}$$

K, Will not be used

b. Find P_a , P_s and P_p :

$$\mathbf{P_a} = 1/2 \, \mathbf{K_a} \, \gamma \, \mathbf{H_a}^2$$

 $= (.5) (.33)(130)(16.66)^2$

= 5953.57 lbs.

$$P_a = K_a q H_a$$

= .43 (0) (7.75)

= 0 lbs. (No surcharge)

P_n Will not be used

Note: Passive resistance will be ignored to provide an additional safety factor during construction. Depending upon construction supervision, backfilling against the front of the wall may not be performed until after the wall has been completed.

2. Determine stability against sliding along the base:

a. Find F, F, and FS,

$$\mathbf{F}_{s} = (\Sigma \text{ Horizontal sliding forces})$$

=
$$P_a \cos (\delta + \beta - 90) + P_s \cos (\delta + \beta - 90)$$

$$=$$
 5953.57 (.97) + 0 (.97)

= 5774.96 lbs

$$\mathbf{F_r} = (\Sigma \text{ Vertical forces}) \times \mathbf{f}$$

Туре			$W_{\mathbf{x}}$	$\mathbf{d_x}$	$\mathbf{M}_{\mathbf{x}}$
Front Wall Rear Wall Tie Backs Stone Footing Backfill			4350.00 lbs	2.00	8700.00
			3480.00 lbs	5.75	20010.00
			121.80 lbs	3.75	456.75
			3142.80 lbs	3.75	11785.50
			1015.00 lbs	•••	****
			2340.00 lbs	5.84	<u>13665.60</u>
	$\Sigma W_x = \overline{14,449.60 \text{ lbs}}$			$\Sigma M_{x} = 54,617.85$	
	$\mathbf{F}_{\mathbf{r}}$	=	$[P_a \sin(\delta + \beta - 90) + P_s \sin(\delta + \beta - 90) + \Sigma W_x] (f)$		
	= [5953.57 (.22) + 0 + 14449.60] (.60)				
		=	9455.63 lbs		
	FS,	=	$\frac{F}{F_s} = \frac{9455}{5774}$		≥ 1.5 O.K.

3. Determine stability against overturning about the toe:

a. Find M_o, M_r and FS_o:

$$\begin{split} \mathbf{M}_{o} &= & \left[\mathbf{P_{a}} \cos \left(\delta + \beta - 90 \right) \right] \left(\mathbf{H_{a}/3} \right) + \left[\mathbf{P_{s}} \cos \left(\delta + \beta - 90 \right) \right] \left(\mathbf{H_{a}/2} \right) \\ &= & 5953.57 \; (.97) \; (5.5) + 0 \\ &= & 31,762.29 \; \; \text{ft. lbs} \\ \mathbf{M}_{r} &= & \left(\mathbf{W_{x}} \right) \left(\mathbf{d_{x}} \right) + \left[\mathbf{P_{a}} \sin \left(\delta + \beta - 90 \right) \right] \left(\mathbf{d_{a}} \right) + \left[\mathbf{P_{s}} \sin \left(\delta + \beta - 90 \right) \right] \, \mathbf{d_{s}} \\ &= & 54617.85 + 5953.57 \; (.22) \; (6.7) + 0 \\ &= & 63,393.41 \; \; \text{ft. lbs.} \\ \mathbf{FS_{o}} &= & \underline{\mathbf{M}_{r}} &= & \underline{63,393.41} \; = & \mathbf{2.0} \; \geq \; \mathbf{2.0} \; \; \mathbf{O.K.} \end{split}$$

TIE-BACK UNIT

COPING UNIT

SHOP DRAWING FOR DURA-HOLD TYPICAL UNITS

Scale: 3/8"=1" - 0"

Plate No.

DH-1

LINE OF EXCAVATION (VARIES) FILTER FABRIC COMPACTED BACKFILL -FINISHED GRADE STANDARD UNIT TIEBACK UNIT CONCRETE FOOTING EACH WAY ð 4 ₫ 0 COMPACTED GRANULAR FILL - UNDISTURBED GROUND DURA-HOLD STANDARD UNIT DURA-HOLD COPING UNIT WEEP HOLES IF REQUIRED FILTER FADRIC
CONTINUOUS TO DAYLIGHT 17-0 TOP OF WALL OF FTG 12'-0" 3'-0" PREE B'-0°

WALL SECTION
SCALE: VATIO-O

NOTE DEPTH OF EMBEDMENT, FOOTING TYPE, SIZE AND REINFORCING DEPENDS UPON CONDITIONS

SHOP DRAWING FOR TYPICAL DURA-HOLD SINGLE CRIB WALL

Scale: 1/4"=1'-0"

Plate No.

DH-6

SHOP DRAWING FOR DURA-HOLD SINGLE CRIB "T" WALL PLAN

Scale: $3/8^{\circ} = 1' - 0^{\circ}$

Plate No.

DH-7