TYPICAL RETAINING WALL PARAMETERS

Note: Variables below refer to the Typical Equations that follow and the Typical Retaining Wall Analysis Parameters diagrams shown on Plate No.'s A1 and A2.

Wall Variables: Exposed wall height H Effective wall height retaining soil H. Wall embedment depth h Width of wall base b Unit weight of wall components γ,,, Surcharge loading q Angle of backfill with the horizontal i Angle of wall batter from vertical α Angle between a line connecting the back of the wall, with the β horizontal

Weight of components of typical cross section of wall W,

Distance from the toe of the wall to the centroid of components of cross section

Soil Variables:

γ,	•	Unit weight of soil
δ	-	Angle of wall friction
ф	-	Angle of internal friction
f	_	Frictional coefficient at base
K,	-	Active earth pressure coefficient
	•	Passive earth pressure coefficient
K _p B _a		Allowable soil bearing pressure
		Design soil bearing pressure
B_{p}		200-6

Load Variables:

F.	_	Forces resisting sliding along the base
	_	Forces causing sliding along the base
F.	-	Moments resisting overturning about the to
\mathbf{M}_{τ}	-	Moments resisting over the find about the to
3.4		Moments causing overturning about the too

Moments causing overturning about the toe $\mathbf{M}_{\mathbf{a}}$ Active soil force

Passive soil force

Active soil force due to surcharge Factor of safety against sliding

Factor of safety against overturning FS,

TYPICAL EQUATIONS FOR RETAINING WALL ANALYSIS USING THE COULOMB METHOD

Note: The equations make use of the previous list of variables and repair to the typical retaining wall analysis diagrams shown on Plate No.'s A1 and A2.

A. Forces acting on wall due to:

1. Active Pressure

$$\begin{split} P_{a} &= 1/2 \ K_{a} \ \gamma_{s} \ H_{a}^{\ 2} \\ Where & K_{a} = \left[\frac{cosec \ \beta \ sin \ (\beta - \phi)}{\sqrt{sin \ (\beta + \delta)} \ + \sqrt{\frac{sin \ (\delta + \phi) \ sin \ (\phi - i)}{sin \ (\beta - i)}}} \right]^{2} \end{split}$$

2. Passive Pressure

$$\begin{aligned} P_{p} &= 1/2 \ K_{p} \ \gamma_{s} \ h^{2} \\ Where \\ K_{p} &= \begin{bmatrix} \frac{\cos c \ \beta \ \sin \left(\beta + \phi\right)}{\sqrt{\sin \left(\beta - \delta\right)} \ - \sqrt{\frac{\sin \left(\delta + \phi\right) \sin \left(\phi + i\right)}{\sin \left(\beta - i\right)}} \end{bmatrix}^{2} \end{aligned}$$

3. Surcharge Pressure

$$P_s = K_a q H_a$$

B. Stability Against Sliding Along the Base:

1. Sliding Forces:

$$\Sigma F_a = (\Sigma \text{ horizontal sliding forces})$$

= $P_a \cos (\delta + \beta - 90) + P_s \cos (\delta + \beta - 90)$

2. Resisting Forces:

$$\begin{split} \Sigma F_r &= (\Sigma \text{ vertical forces}) \text{ (f) } + P_p \\ &= [P_a \sin (\delta + \beta - 90) + P_s \sin (\delta + \beta - 90) + \Sigma W_x] \text{ (f) } + P_p \end{split}$$

3. Factor of Safety Against Sliding:

$$FS_s = \frac{\sum Resisting Forces}{\sum Sliding Forces} = \frac{\sum F_r}{\sum F_s} \ge 1.5 \text{ if passive resistance}$$

$$P_p \text{ is ignored}$$

C. Stability Against Overturning About the Toe:

1. Overturning Moment:

$$\Sigma M_0 = [P_a \cos (\delta + \beta - 90)] (H_a/3) + [P_s \cos (\delta + \beta - 90)] (H_a/2)$$

2. Resisting Moment:

$$\sum M_r = \sum (W_x)(d_x) + [P_s \sin(\delta + \beta - 90)] (d_s) + [P_s \sin(\delta + \beta - 90)] (d_s)$$

3. Factor of Safety Against Overturning:

$$FS_o = \frac{\sum \text{Resisting Moments}}{\sum \text{Overturning Moments}} = \frac{\sum M_r}{\sum M_o} \ge 2.0$$

TYPICAL GRAVITY WALL ANALYSIS PARAMETERS

Scale: 3/6 1-0

Scale: V4" 1-0"

Plate No.

A-2